Package: FSelectorRcpp 0.3.13
FSelectorRcpp: 'Rcpp' Implementation of 'FSelector' Entropy-Based Feature Selection Algorithms with a Sparse Matrix Support
'Rcpp' (free of 'Java'/'Weka') implementation of 'FSelector' entropy-based feature selection algorithms based on an MDL discretization (Fayyad U. M., Irani K. B.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In 13'th International Joint Conference on Uncertainly in Artificial Intelligence (IJCAI93), pages 1022-1029, Chambery, France, 1993.) <https://www.ijcai.org/Proceedings/93-2/Papers/022.pdf> with a sparse matrix support.
Authors:
FSelectorRcpp_0.3.13.tar.gz
FSelectorRcpp_0.3.13.zip(r-4.5)FSelectorRcpp_0.3.13.zip(r-4.4)FSelectorRcpp_0.3.13.zip(r-4.3)
FSelectorRcpp_0.3.13.tgz(r-4.4-x86_64)FSelectorRcpp_0.3.13.tgz(r-4.4-arm64)FSelectorRcpp_0.3.13.tgz(r-4.3-x86_64)FSelectorRcpp_0.3.13.tgz(r-4.3-arm64)
FSelectorRcpp_0.3.13.tar.gz(r-4.5-noble)FSelectorRcpp_0.3.13.tar.gz(r-4.4-noble)
FSelectorRcpp_0.3.13.tgz(r-4.4-emscripten)FSelectorRcpp_0.3.13.tgz(r-4.3-emscripten)
FSelectorRcpp.pdf |FSelectorRcpp.html✨
FSelectorRcpp/json (API)
# Install 'FSelectorRcpp' in R: |
install.packages('FSelectorRcpp', repos = c('https://mi2-warsaw.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mi2-warsaw/fselectorrcpp/issues
entropyfeature-selectionrcppsparse-matrix
Last updated 2 months agofrom:e15f16a7b9. Checks:OK: 3 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win-x86_64 | OK | Nov 17 2024 |
R-4.5-linux-x86_64 | OK | Nov 17 2024 |
R-4.4-win-x86_64 | NOTE | Nov 17 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 17 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 17 2024 |
R-4.3-win-x86_64 | NOTE | Nov 17 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 17 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 17 2024 |
Exports:.information_gaincustomBreaksControlcut_attrsdiscretizediscretize_transformequalsizeControlextract_discretize_transformerfeature_searchinformation_gainmdlControlreliefto_formula
Dependencies:BHbriocallrclicodetoolscrayondescdiffobjdigestevaluateforeachfsglueiteratorsjsonlitelifecyclemagrittrpkgbuildpkgloadpraiseprocessxpsR6RcppRcppArmadillorlangrprojroottestthatwaldowithr
Benchmarks: discretize()
Rendered frombenchmarks_discretize.Rmd
usingknitr::rmarkdown
on Nov 17 2024.Last update: 2024-09-30
Started: 2017-02-23
Integer variables
Rendered frominteger-variables.Rmd
usingknitr::rmarkdown
on Nov 17 2024.Last update: 2024-09-30
Started: 2018-11-05
Motivation, Installation and Quick Workflow
Rendered fromget_started.Rmd
usingknitr::rmarkdown
on Nov 17 2024.Last update: 2024-09-30
Started: 2017-02-23
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Direct Interface to Information Gain. | .information_gain |
Select Attributes by Score Depending on the Cutoff | cut_attrs |
Discretization | customBreaksControl discretize equalsizeControl mdlControl |
Transform a data.frame using split points returned by discretize function. | discretize_transform extract_discretize_transformer |
General Feature Searching Engine | feature_search |
Entropy-based Filters | information_gain |
RReliefF filter | relief |
Create a formula Object | to_formula |